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Hurricane Disaster Assessments With Image-Driven
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Abstract—Detection, classification, and attribution of high-
resolution satellite image features in nearshore areas in the af-
termath of Hurricane Katrina in Gulfport, MS, are investigated
for damage assessments and emergency response planning. A
system-level approach based on image-driven data mining with
o-tree structures is demonstrated and evaluated. Results show a
capability to detect hurricane debris fields and storm-impacted
nearshore features (such as wind-damaged buildings, sand de-
posits, standing water, etc.) and an ability to detect and classify
nonimpacted features (such as buildings, vegetation, roadways,
railways, etc.). The o-tree-based image information mining capa-
bility is demonstrated to be useful in disaster response planning
by detecting blocked access routes and autonomously discovering
candidate rescue/recovery staging areas.

Index Terms—Emergency response planning, image-driven
data mining, image information mining, satellite image hurricane
disaster assessments, o -tree classifiers.

I. INTRODUCTION

IGH-RESOLUTION multispectral commercial satellite
imagery is available for most locations on Earth before

and after major disasters. Potential uses of these image sets
include the following:

¢ debris field detection;

* ingress route obstruction detection;

* building damage detection and assessments;

e remote sensing in tactical support of rescue planning.

Each of these image exploitation applications for remotely
sensed images can be performed manually with expert human
analysis and image annotation tools, but such effort is labor
intensive and hinders the quick response needed for first respon-
ders in large disaster impact zones. Tools that are able to adapt
to newly encountered disaster-related features and that can be
easily trained and applied to process volumes of imagery of
large disaster regions are needed. This paper explores such a
tool that is based on image-driven data mining with o-trees [2].
This data mining approach to feature extraction and image con-
tent labeling is adaptable to various types of sensor systems and
data sets, and enables extraction algorithms to be configured
on-the-fly by novice users. In these facets, the demonstrated
framework is adaptable to nearly any disaster-related image
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exploitation task without requiring time and expense in pattern
recognition engineering efforts.

The data mining image assessment tools demonstrated in
this paper are able to support interactive learning sessions
performed under the tutelage of sensei users, who are granted
rights of data annotation for training purposes in the data
warehouse. These data mining tools are designed to be easy to
use (do not require a high level of end-user expertise in the un-
derlying technologies) and are not time consuming or resource
demanding to train (training can be performed with mouse-
driven actions on laptop class computers). The supporting
o-tree feature exemplar templates are usually well generalized
even when trained with limited training data. Hence, in this sys-
tem, a sensei user can conduct an interactive learning session on
a small study area, and then the computer-assisted assessment
tool applies the lessons learned from the localized study area to
autonomously analyze larger-area disaster impact zones.

A. Integrative Data Warehouses and Hard Truth Data

Much knowledge base value is created in the archival of an-
alyzed imagery. Knowledge bases should be useful in support-
ing referential comparisons with new imagery for inferential
decision support [5]. These warehouses may also incorporate
“before disaster” feature ground truth data and, if available,
“after disaster” ground truth data acquired in postdisaster site
visits. This class of validated ground truth data is referred to as
hard truth data in this paper.

Hurricane Katrina struck coastlines along the northern Gulf
of Mexico particularly vulnerable to storm surge impact and
flooding. The widespread failure of tide gauges along the
Mississippi and Louisiana shores called upon reconnaissance
crews to collect high water marks. The second author led a
Georgia Tech reconnaissance team that surveyed impacted
coastlines in Florida, Alabama, Mississippi, and Louisiana in
September and October 2005. Four separate boat expeditions
that covered the Gulf islands from Petit-Bois Island to Cat
Island of Mississippi were also made. The teams measured
maximum storm tides, overland flow depths, and inundation
distances. The teams also collected soil samples from storm
deposits and documented erosion (site visit photographs shown
in Fig. 1). Perishable infrastructure damage was recorded
at various scales. The elevations of flood water marks on
buildings, scars on trees, and rafted debris were measured as
indicators of the maximum storm tide. High water marks were
photographed and localized using Global Positioning System.
Transects from the beach to high water marks were recorded
with a laser range finder.
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Fig. 1.
wash-out height. (c) Sea and rail containers debris.

This survey showed that the storm tide peaked to the east
of Katrina’s path with consistent recordings between 7-10 m
along a 60-km stretch of the Mississippi coastline from
Lakeview (20 km east of center) to Ocean Springs. The state
port of Mississippi in Gulfport is located 50 km to the east
of the hurricane center in the middle of the hardest hit stretch
of coastline. The surge penetrated at least 10 km inland in
many portions of coastal Mississippi and up to 20 km inland
along bays and rivers, crossing Interstate 10 in many locations.
The high water marks dropped below 5 m along the Alabama
coast. More than 2-m high water marks were measured 240 km
east of Katrina’s track along Florida’s panhandle. The barrier
islands 10-20 km offshore the Mississippi and Alabama coast
were completely submerged and overwashed by the storm tide.
The variation of the high water measurements on the islands
was in accordance with corresponding onshore recordings.

B. Interactive Learning Sessions and Soft Truth Data

Disaster assessment applications need flexible computer
tools that are not brittle with respect to a restricted set of
predetermined disaster-related feature classes. Sensor modality
issues such as time of day, weather state, and scene location
specifics tend to make referential mining systems brittle with
respect to static warehouses that totally depend on predisaster
image collections for knowledge base formation. Assessment
applications should employ adaptable tools capable of dealing
with newly acquired image sets with feature (disaster related
or not) classes not necessarily known or annotated beforehand
in the warehouse. This capability is achieved in the proposed
system of this paper with simple training steps performed under
the supervision of a sensei user. The labeling activities of a
sensei user in an interactive learning session create another
class of “truth” data resident in a data warehouse. This class
of subjectively labeled data is termed here as soft truth data.

C. Related Image Information Mining Research

Data mining aims to extract useful information from large
archives of raw numerical data [6]. Image data mining concepts
are still being formulated, and various systems have been pro-
posed [10]. To some, “image mining” is the process of finding

Hurricane Katrina damage site measurements at Gulfport Mississippi terminal and container storage lot. (a) Casino barge washed ashore. (b) Surge

useful images in large image archives. To others, image mining
implies the use of data mining in heterogeneous databases [7].
Query formulation domains are often restricted to only archived
image metadata tags recorded in text or numeric formats [3].
Such metadata queries require annotation tags assigned before-
hand to label image characteristics and feature content. Manual
image annotations with a descriptive lexicon are prohibitive for
high-volume workflows or large archives and are difficult when
targeted toward disaster damage assessments because of lack of
extensive relevant database image sets before specific disaster
occurrences. Research has yielded image mining approaches
such as content-based image retrieval, which is characterized
by the ability of a system to retrieve relevant images based
on an image’s high-level query features such as color, texture,
or morphology [9]. These features are all extracted by (some-
times compute-intensive) image analysis to enable content-
based query rather than by using tagged metadata keywords
[8]. One problem of high-level feature-to-feature comparative
systems is the inability to adapt to new target feature sets
and changing user needs, and being overly application specific
in architecture and operation [5]. High-level feature-to-feature
comparative systems have the challenging requirement for non-
recurring engineering for discriminating feature discovery and
definition, and the development of algorithms for efficient fea-
ture extraction. The adaptability of such systems is constrained
when encountering new sets of disaster imagery.

A novel template trellis called o-tree is at the heart of the im-
age information mining system utilized in this paper and allows
queries to be performed in a data-compressed representation of
the pixel space of the archive imagery. This system is easily
adapted to new image sets and new features of interest. The
next section describes, at a high level, o-trees and their use for
semi-autonomous and autonomous image content labeling.
A more detailed description can be found in [2]. The demon-
stration and evaluation of o-tree image-driven data mining on
electro-optical satellite images to detect the highly specific fea-
tures sets associated with hurricane disasters is the primary con-
tribution of this paper. This paper quantifies the performance of
image-driven data mining for image content labeling in hurri-
cane damage assessments and for first-responder tactical rescue
planning.
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II. SOLDIER BIT-PLANE DATA MINING

A compressed binary data format useful in pattern
recognition and data mining applications is the expanded digital
“bit-plane” representations ip formed by searches of
application-specific o-tree structures [2]. The o-tree pattern
recognition template set provides easily searched (structured)
templates t that approximate (unstructured) warehouse feature
exemplars t, and provides easily manipulated approximations
of the content of new images being compared with the
knowledge base. A normalized mean-squared distance measure
d(t,t(ip)) is used in a greedy sequential search encoder
to quantify pattern recognition similarity and produce the
sequence of expanded digital representations ip = (143 - - ip)
(see the Appendix for additional details). A progression of data
mining query searches can then be performed by comparing
the resulting o-tree bit-plane representations of the new image
content with the expanded digital bit-plane representations
of the archived knowledge warehouse content. The matched
data indexes ip (with full or partially matched bit-plane depth)
can then be subsequently used for data mining extraction of
estimated feature class membership and estimated feature
attribute values. Hence, image content labeling with image-
driven data mining starts with the formation of o-trees for
sets of referential feature exemplars of application interest
contained in the warehouse knowledge base. For example,
as shown in Fig. 2(a), assume that a feature locator table L,
has been created by a sensei user and stored in a conventional
database system. Each row of the feature locator table describes
an archived feature exemplar by specifying a source image
Lsource, the pixel location (X,Y’) of the feature exemplar, a
descriptive feature label F, and any hard or soft attribute labels
or attribute values A associated with the feature example. The
locator data tuples can thus be described as

La = [kasourcchv YvFvA] (l)

where k is the primary key of the database table L,, and a is
used to differentiate feature locator tables.

A pixel block extraction tool combined with a “training”
query @, into L, is used to form a snippet set Sg, of pixel
block feature exemplars. This user-generated query (), can be
generally described as

@, = [select feature exemplar references from L, , and

extract corresponding pixel blocks from Ioy;ce

(where user defined query condition is satisfied)].

The resulting training snippet set is indicated as

SQ. (bw, b, ba) = {t(kq, )} 2)

where t(kg,) are by x by X by pixel blocks identified by
the foreign key kg, (primary key of L,) returned by the
query @ (L,). The parameters (b,,, by, bg) describe the width,
height, and depth of the 2-D (spatial-only) or 3-D (spatial-
spectral) pixel blocks. As shown in Fig. 2, the snippet set
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Sq., is used next as a training set to design a o-tree T, with
algorithms described in [1]. After a o-tree T,(Sq, ) has been
produced to represent the feature exemplars of Sg, this same
o-tree is used to generate compressed versions i,(kg,) of
t(kg,) € Sg,, where i,(kg,) are a complete set of partial
and full (1 < p < P) expanded digital representations. This
encoded and compressed representation of the feature snippet
set is added to the data warehouse and entered into database
tables indicated as

T5(8q,) = [kg,,i1,12,...,ip] 3)

where i; = (i1), iz = (i1,142), i3 = (i1, 42, 3), and so on. Ta-
bles such as these joined with other warehouse ground truth
tables provide Source Optimized, Labeled, Dlgital Expanded
Representations or, more simply, “SOLDIER” representations
of feature-relevant knowledge-base content.

The SOLDIER index tables T, (Sq, ) of (3) joined via kg,
with the feature and attribute information columns of the locator
table L, of (1) provide a powerful resource for image-driven
data mining. During the data mining runtime, an extractor
algorithm takes pixel blocks t, ) from locations (z,y) of
an image under analysis. Then, the SOLDIER o-tree indexing
engine T, is applied to t(, .y to yield the expanded digital
representations i,(z,y) = 75 (t(5,y)). The o-tree-indexed rep-
resentation i,(x, y) of the pixel query block t, . can then be
used in a conventional query to perform a data mine for feature
similarity sets and aggregates of related label and attribute
information, i.e.,

Q(a,y) = [select F and A from L, and 7,(Sg,,)
joined via kg, , where iy (z,y) = Ty (t(2,4))
equals i,(kg,) in T,(Sq, )] - 4)

This SOLDIER index comparison between new image con-
tent and archived image content yields SOLDIER indexes
with variable “bit-plane” index depth ppnax € {0,1,...,P}.
The reason for including partial SOLDIER representations is
that partial o-tree paths provide a sequence of pixel space
generalizations (from course to fine) of the elements t(kq, )
of Sq, . This provides increased robust classifier performance
when new image data are encountered that are only approxi-
mately similar, by varying degrees, to warehouse feature ex-
emplars in the aggregate Sqg,. The query results of (4) will
return sets {F, A} of feature and attribute point data for
each matched bit plane of the partial/full expanded digital
representations i,(z,y) of a pixel block t(, ,y. In addition
to these mined set of feature and attribute data, it is possi-
ble to augment the data warehouse with archived maximum
a posteriori (MAP) Bayesian estimates Fyap and Apap
over the data-mined feature/attribute sets {F, A}. The MAP
values can be estimated from the training data in the fol-
lowing conventional manner. Let N(i,) be the number of
training vectors in the Voronoi cell of o-tree exemplar f:(ip).
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(®)

(d)

Interactive training process and results for hurricane debris detection. (a) Image-driven data mining workflows for training and classification. (b) Local

interactive study site selected by a sensei user for training a o-tree hurricane debris field detection image data mine. (c) Sensei-user-selected feature (white) and
counter-feature (colors) examples in the localized interactive training zone for hurricane debris detection o-tree training. (d) Wide-area Hurricane Katrina debris
detection result using the classifier from the sensei user’s localized training session.

Let k, be the subset of the N exemplars that belong to
class w. Assuming equal prior probabilities over the class
labels w, the MAP estimate of p(wli,) is k,/N(i,). These
MAP estimates are integrated into a sequence of hash tables
Hili1,Fmar(1)], Halio, Fymar(2)],..., Hplip, Fuar(P)].
An image-driven data mine search can be efficiently performed
exterior to database services with the use of hash tables. That is,
each bit-plane hash table H,,[i,, Faap (p)] is easily utilized for
efficient runtime MAP feature class labeling of mined image

points by a search with the hash key i, into Hp[i,, Faap(p)]
to return Fyrap (p).

III. IMAGE-DRIVEN DATA MINING

The proposed image-driven mining system is able to support
many image exploitation applications defined and configured
by rather novice users in an easy, straightforward way. The
following applications have been selected to demonstrate the
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simplicity and scope of potential applications of o-tree-based
image data mines when applied to remotely sensed disaster
images.

A. Interactive Learning Session for Hurricane Debris Fields

The first disaster image mining experiment is the detection
of nearshore hurricane debris fields in a situation where no
prior archive imagery exists with such features, where no
relevant warehouse-resident hard truth data exists, and where
the only option for postdisaster satellite image exploitation is
interactive learning on tutorial areas under the guidance of
a sensei user. Shown in Fig. 2(b) is a commercial satellite
image of the Gulfport, Mississippi area after Hurricane Katrina.
This is a pan-sharpened multispectral composite formed from
2 x 2 m red, green, blue, and near-infrared planes (IKONOS
multispectral) and 1 x 1 m panchromatic (IKONOS-2) imagery
(creation date: September 2, 2005). The white box is the area
selected by a sensei user for training in an interactive learning
session. Shown near the bottom of Fig. 2(c) are small white
boxes that represent image subareas with hurricane debris fields
selected by the sensei user and labeled with a feature class
label value F'1 51,01 = “Debris Field-Inundation Deposits.” Each
pixel location in each of the solid white boxes is archived
and labeled. Then, the SOLDIER-MAP hash tables generated
from this interactive training area are used for classification
across the larger scene. A quick look test shows the sen-
sei user in an interactive learning session that the following
image content feature classes are sometimes confused with
debris fields:

* Building-Roof-Gray;

* Building-Roof-Tan Gray;
* Building-Shadow;

¢ Stadium-Seats;

¢ Flood Swept-Tan;

* Flood Swept-Tan Gray;
* Flood Swept-Sandy;

* Parking-Asphalt;

* Parking-Concrete;

» Parking-Concrete-Edge;
¢ Road—Curb;

¢ Sidewalk;

e (Qrass;

* Soil-Red Clay.

The sensei user augments the warehouse-extracted training
set during this interactive learning session by finding examples
of each of these confuser feature classes, drawing a crop-
box around such features (color boxes in Fig. 5), assigning
the appropriate feature label, commanding the system to enter
these feature exemplar pixel locations into a locator table, and
repeating the experiment. The final result of performing an
image-driven data mine for the entire scene against the sensei
user’s localized training session result is shown in Fig. 2(d).
This result was obtained without any additional false alarm
mitigation. An error analysis was performed to assess the
classification error and specify the classifier’s sensitivity as
the producer’s accuracy and the classifier’s specificity as the
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user’s accuracy [4]. The probability of an evaluation pixel
being correctly classified is the producer’s accuracy, deter-
mined by the number of pixels correctly classified divided
by the total number of evaluation pixels for the class. Any
shortfall indicates a measure of omission error probability.
The probability that a pixel classified in the image is really
a member of the assigned class is the user’s accuracy and is
calculated as the number of pixels correctly classified as a class
divided by the total number of pixels that were assigned in that
land cover class. The accuracy of this hurricane debris field
feature extraction was assessed with sequestered test data not
used for training. The evaluated user’s accuracy for detecting
hurricane debris is around 75%. The producer’s accuracy is
about 85%. These accuracy estimates were evaluated with
about 1480000 test snippets. A comparative study was also
conducted for debris field detection with a commercially avail-
able parametric multispectral classifier that uses maximum-
likelihood decision rules. The parametric multispectral analysis
yielded a sensitivity of 47% and a specificity of 82% when the
following set of supervised classes were used for training: de-
bris, building, house, road, grass, tree, soil, parking, sidewalk,
and soil.

B. Land Cover and Disaster Impact Classification

The next experiment’s objective is to classify and label
relevant land cover content in the wide-area scene even if the
relevant features are not significantly damaged or impacted by
the hurricane disaster. The intent is to have an autonomous
method of detecting where hurricane impact zones interrupt
normal features that could support rescue/recovery logistics,
e.g., debris fields that interrupt routes of ingress and egress. The
prior list of features is expanded by a sensei user by adding
exemplars to the warehouse of the following image content
feature classes:

» Building-Roof-Edge;

* Building-Roof-Corner;
* Building-Roof-Damage;
* Building-Roof-Brown;
* Building-Roof-Dark Gray;
* Building-Roof-Damage;
» Ship Cargo Containers;
¢ Vehicle;

* Road-Asphalt;

e Train Track;

¢ Tree;

e Soil;

* Standing Water.

Example feature locations are identified for each of these
additional nearshore feature classes in an interactive learning
session within the localized study area to expand the knowledge
base support of the image mine data warehouse. A constraint
in supportable feature types is that a feature class must be
at least partially describable within a block of pixels of the
selected snippet size. The final set of example feature labels
for these 26 feature classes has about 25 000 examples (mostly
generated by “area” examples selected by the sensei user, where
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Fig. 4. SOLDIER o-tree templates of a 26-member feature set classifier

(eight-stage o-tree with 16 templates at each stage).

DEBRIS FIELD CLASSIFICATION ACCURACY AND BLOCK SIZE

TABLE 1

Block Producer’s  User’s
Size Accuracy Accuracy
3x3 86.09% 64.76%
5x5 81.63% 77.61%
7x7 81.12% 76.94%
9x9 76.75% 76.98%
11x11  6298% 81.27%
13x 13  60.73% 87.51%
15x 15 56.64% 77.02%
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Fig. 3. Peak signal-to-noise ratios for normalized four-band pixel block sizes

ranging from 3 X 3 to 15 X 15 obtained as stages are grown in the o-tree
design process. (a) SOLDIER approximation fidelity as the number of stages
is increased during the design process. (b) SOLDIER approximation fidelity as
the compressed data rate is increased during the design process.

each pixel in a selected homogenous feature area is entered
into the feature locator table with the appropriate soft truth
label). Training queries that extract all 25 000 feature example
snippets of various spatial block sizes with full spectral depth
(four layers) are used to generate training sets to produce
o-trees. The pixel blocks are expanded to include a negative
pixel version of each spectral layer for energy normalization.
Fig. 3 shows intermediate results of the design process as
a function of block size and as the number of o-tree layers is
grown. An increasing level of aggregate approximation fidelity,
measured by a peak signal-to-noise ratio, is obtained as stages
are added to the o-tree. The number of stages increases from
one to eight. The design process was repeated eight times to
generate eight different o-trees as the pixel block size was
varied from 3 x 3 up to 15 x 15 pixels per block. The ap-
proximation fidelity decreases as the block size is increased for

a fixed number of stages. But when viewed from the perspective
of data rate, measured as bits per pixel, the approximation
fidelity obeys a typical rate-distortion characteristic as the rate
is increased, with little difference in rate-distortion performance
for block sizes of about 9 x 9 and above at a data rate of
about R = 0.04 bits/pixel. The data rate is computed as R =
Plog,(M)/(n x n x s), where P is the number of stages, M
is the number of templates at each stage, n x n is the block
spatial size in pixels, and s is the number of spectral layers.
In each of these cases, the o-tree design process produces
16 templates at each layer (see Fig. 4 for the 9 x 9 block
size case). The pixel values of the residual pattern templates,
as shown in Fig. 4, are real numbers and may have positive
or negative values. Thus, for display purposes, these pixel
templates are normalized such that the brighter pixels in the
templates indicate positive values and the darker pixels indicate
negative values. The residual templates at the latter stages of the
template trellis have also been normalized for display purposes
to show texture content.

Shown in Table I is the performance of a o-tree detector for
debris fields as a function of block size. In these experiments,
the number of stages and the number of templates per stage
are held fixed, and the block size is varied. The performance
values in Table I show that at a block size of 9 x 9, the
producer’s accuracy is nearly equal to the user’s accuracy
(about 77%). Smaller block sizes generally produce higher
producer accuracy without changing the user’s accuracy. Larger
block sizes generally achieve lower producer accuracy and,
sometimes, higher user accuracy. This paper shows that with
a o-tree classifier that has eight stages and 16 templates at each
stage, a spatial block size of 9 x 9 is a reasonable choice.
All subsequent detection/classification experiment results that
will be discussed in this paper for feature classes as diverse
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TABLE II
CLASSIFICATION ACCURACY

Class Producer’s  User’s
Name Accuracy Accuracy
Residential Buildings  91% 74%
Damaged Buildings 84% 54%
Grassy Areas 90% 82%
Soil Areas 89% 99%
Roads 61% 61%
Parking Areas 76% 63%
Train Track 81% 86%
Tree 86% 70%
Road Obstructions 100% 50%
Refugee Areas 100% 100%
Sand Deposits 80% 75%
Shipping Containers 51% 82%
Standing Water 100% 68%

as buildings, roads, train tracks, sand deposits, trees, surface
type, etc., were derived from the 128 templates with block size
of 9 x 9, as shown in Fig. 4. All land cover/disaster impact
classification accuracy estimates quantified in the remainder of
this paper were evaluated with about 752 000 test snippets, none
of which were used for training purposes (Table II).

C. Subfeature Fusion/Proximity Detection Filter

One of the important aspects of this paper’s image mining
capability is the ability to query for finely attributed features
and subfeatures. The spatial snippet size used in these ex-
periments is 9 x 9 pixels. Hence, the notion of supportable
features assessable via pixel block query and the class of image
object features representable by pixel block templates are those
image features or subfeatures that fit within the 9 x 9 snippet
block size. There are, however, many important image objects
of interest that are larger than this choice of block size. A
straightforward approach to recognize larger image content
objects would be to increase the block size. However, when the
block size is increased, computational demand increases and
larger training set sizes are required for the resulting o-trees to
be well generalized. An alternative to increasing block size to
deal with larger image content objects is to employ feature-level
fusion and proximity analysis. That is, after the o-tree-based
maximum posterior classification of 9 x 9 features and sub-
features has been completed, a second sliding window of some
size runs through the content-labeled image, and when certain
combinations of subfeatures occur within the window size at
sufficient frequencies, the presence of a composite higher-
level object is declared. For example, the next experiment
focuses on finding residential buildings with constituent sub-
feature fusion of shingles, building edges, and building corner
subfeatures.

1) Building Detection: The subfeatures associated with res-
idential buildings are roof edge lines, roof corners, and various
residential roof colors (brown, tan, gray, dark gray shingles,
etc.). Fig. 5(a) is a closeup of an area of the wide-area image
scene that contains homes. This area was not used in training
when the image mine warehouse was created from a localized
study area. Fig. 5(b) shows the detection map of all pixel block
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locations that have positive detections for the following classes
of subfeatures:

¢ Building-Roof-Edge;

* Building-Roof-Corner;

* Building-Roof-Brown;

* Building-Roof-Gray;

* Building-Roof-Dark Gray;
* Building-Roof-Tan Gray.

The detection map in Fig. 5(b) was generated by doing a
o-tree SOLDIER-MAP classification of all interior points of
the image. A detection is declared, and the corresponding pixel
is marked with a color if the o-tree possesses leaf nodes that ap-
proximate the image blocks with a positive input signal energy
to mismatch noise ratio [2]. The detected pixel is then assigned
to the maximum posterior class over the set of 26 possible fea-
ture classes. As shown in Fig. 5(b), there is much small feature
content in the image that correlates with residential building
edges and corners (detections indicated with blues and purples)
and with shingle texture and colors (greens and yellows).
Although there is much nonbuilding-related image content that
matches (both spatially and/or spectrally) these categories of
subfeatures, when a subfeature fusion/proximity test is applied
to retain only the detections associated with spatially adjacent
subfeatures of different types related to residential buildings,
the result in Fig. 5(c) is obtained. Here, detected edge or corner
structures are only retained if there is a number of nearby build-
ing roof shingle detections. The proximity filter is constructed
by running a sliding 9 x 9 “box window” through the image
and counting the number of each subfeature detections that
occur at the edges of the box. When certain combinations of
subfeatures occur, e.g., shingles near building edge subfeatures,
the subfeature detections are retained; otherwise, they are dis-
carded. In these initial experiments, this is a heuristic approach
without any attempt at this time to optimize performance.
The sensitivity of the residential building detector is estimated
to be about 91%. The specificity of the declared residential
buildings is estimated to be about 74%. This classifier was not
trained to detect industrial buildings, which tend to have lighter
roof coverings. As seen by comparing Fig. 5(b) and (c), this
proximity subfeature filter approach holds promise for false
alarm mitigation and higher-level image content understanding
by building on the spatial correlations of detected constituent
subfeatures. An evaluation of the typical classification errors
for residential buildings shows that standing water in asphalt
areas is sometimes confused as residential building structures.
This is believed to be a result of the spectral similarity of some
roof shingle structures and wet asphalt.

2) Damaged Residential Buildings, Grass, and Soil
Detection: When the fusion/proximity filter is augmented to
require the presence of detected residential building roof dam-
age (by training with a subfeature labeled as “Building-Roof-
Damage”) in the vicinity of roof shingles and roof edge/corner
features, the wind-damaged building detection map (indicated
in red) in Fig. 5(d) is obtained. The estimated wind-damage
detector sensitivity is 84% with a specificity of 54%. Sub-
jectively, debris standing in asphalt areas is sometimes con-
fused as building damage. This is believed to be a result of the
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Fig. 5. Image-driven data mining results for various land cover classes. (a) Portion of large scene not included in localized training study. (b) Raw detection
map of subfeatures that likely comprise residential buildings: roof shingles (green and yellow), roof edges, and corners (blue and purple). (c) House detections
after proximity filtering of residential house-constituent subfeatures. (d) Wind-damaged home locations (red) determined by a spatial proximity analysis of o-tree-
detected roof shingles, roof edges, roof corners and roof damaged subfeatures, and SOLDIER-MAP detections of grassy fields (green), and bare soils (orange).
(e) Raw road (asphalt and curb subfeatures) detection map shown in blue, and clear asphalt parking area detections shown in purple. (f) Train track feature
detection map (red) and standing tree detection map (green). (g) Roads (blue) and obstruction points (red). (h) Raw road (asphalt and curb subfeatures) detection
map shown in blue, grassy areas in green, and candidate refugee sites in orange. (i) Sand deposits (light blue) detection map, standing water (dark blue) detection
map, and detections of scattered shipping containers (red).

spectral similarity of some roof shingle structures and asphalt. 3) Road and Asphalt Area Detection: Fig. 5(e) shows the
Also shown in this detection map are grassy areas (indicated in SOLDIER-MAP detection map (blues) for subfeatures re-
green) and bare soil areas (indicated in orange). The evaluated lated to road structures. These features are road—asphalt and
accuracy of the grass field detections is about 90% for the road—curb. The detection sensitivity and specificity for the
producer and about 82% for the user. The corresponding combined composite class is approximately 61%. The primary
numbers for the soil detections are 89% and 99%. confuser features for intended road detections are residential
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parking areas, some roof types, and some structures (parking
guidelines, light debris in parking areas, etc.). A proximity filter
has not been applied to the road detection result in Fig. 5(e),
but it is likely that such a filter seeking to spatially correlate the
road subfeatures of curb—structure, center line existence, and
road surface type would do much to mitigate the apparent low
specificity of this raw (no proximity filter or subfeature spatial
fusion) road detection map. The figure also shows asphalt-
detected parking areas (purple) with detection sensitivity of
about 76% and specificity of about 63%. The primary confuser
features with respect to parking areas are some colors of sand
deposits and some building roof coverings.

4) Train Track and Tree Detection: Fig. 5(f) shows the
detection map for the “train track” feature (red). It is difficult
for an untrained observer to separate a train track from a narrow
lane asphalt road, but the o-tree image mine is able to separate
these two classes of similar linear features. The specificity
of this detection map is about 86% with sensitivity of 81%.
There appears to be no prominent confuser class for train track
detections. Visually, the train track detection is rather obvious
and provides an easy visual cue to a human observer. Also
shown in this figure is the detection map for trees (green).
Tree detection specificity is evaluated at 70%, and the detection
sensitivity is about 86%. There appears to be no prominent
confuser class for hurricane-impacted tree image content.

5) Obstructed Road Detection: Fig. 5(g) shows the re-
sult of a proximity analysis performed to spatially analyze
roads—asphalt, roads—curbs, and debris field subfeatures for
the purpose of detecting obstructed roads. The blue features
are roads and curbs, and the red features are those parts of
debris fields that are sufficiently close to road subfeatures to
suggest an obstruction. The obstruction detections have been
slightly blurred to enlarge them and make them more visible
in the detection map display. It appears that all obstructions
were detected (producer’s accuracy is estimated near 100%),
but the specificity is only estimated to be about 50%. The
false obstructions tend to be detected when the debris is near
residential buildings or near wet parking areas. This is likely
due to the spectral similarity of residential roof shingles and
wet asphalt to asphalt road surfaces.

6) Candidate Refugee Site Detection for Rescue Tactical
Support Planning: Fig. 5(h) shows the result of a prox-
imity analysis performed to spatially cluster grass (green),
roads—curbs (blue), and roads—asphalt (blue) subfeatures for
the purpose of detecting candidate grassy refugee tent sites or
supply staging areas with near-road access. The orange areas
are those grassy (sub)areas that may be sufficiently close to road
access for refugees or rescue staging activities. Although there
are only a few examples for evaluation, the results show nearly
100% sensitivity and specificity for grassy areas with nearby
road access.

7) Sand Deposits, Standing Water, and Scattered Shipping
Container Detection: Fig. 5(1) shows areas (light blue) that
seem to contain sand deposits left behind by the storm surge.
Fig. 5(i) shows the raw (no proximity filter or subfeature spatial
fusion) detection of sand subfeature subjectively categorized
(by the sensei user) as sand deposits with tan, tan-gray, and yel-
low spectral signatures. The producer’s accuracy is estimated
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to be about 80%, and the user’s accuracy is evaluated at a level
of about 75%. Fig. 5(i) also shows detected scattered cargo
ship shipping containers (red). This small feature typically fits
within the selected 9 x 9 query pixel block size. In this case,
a proximity filter is not used on this feature class because the
feature class has not been decomposed into more elemental
subfeatures. The specificity of the shipping cargo container
detections is estimated to be 82%, but the sensitivity level is
estimated to be only about 51%. The low level of sensitivity
is due to missed detections of the darker colored containers. If
shipping containers were to be specified in terms of subfeatures
with attributes such as shipping container “colors,” “ends,” and
“centers,” then a proximity filter could be applied to likely
increase detection sensitivity and specificity. What few false
alarms occurred tend to be near edges of industrial building
structures. This figure also shows detections of standing water
(dark blue) with estimated producer accuracy of nearly 100%
but a user’s accuracy of only 68%. Standing water detections
are often confused with building shadows.

IV. CONCLUSION

Novel classification structures based on a o-tree template
trellis have been used as a foundation for systems engineering
of an image-driven information mining capability for disaster
assessments in high-resolution satellite imagery. The system
has been demonstrated as capable of detecting a wide class
of object features and subfeatures after simple end-user train-
ing exercises. Postprocessing has been demonstrated to merge
detected subfeature maps for higher-level object detection and
classification. This paper has shown the adaptability of the
proposed o-tree SOLDIER-MAP system to work with high-
resolution satellite imagery and many fine attribute feature
types without algorithm modification. The system is adaptable
in that the required training phase takes only a short time and
does not demand a high level of user expertise.

APPENDIX
SOLDIER BIT-PLANE INDEX GENERATION ALGORITHM

Sets of data warehouse pixel block feature exemplars t can be
well approximated with o-tree templates t. This search process
results in search path index ip defined as the preimage of
the reconstruction mapping i, — t. The range of the recon-
struction mapping is a set of direct sums of state templates
{t(ip)} = {t1(¢1) + t2(i2) + - - + tp(ip)} witht,(-) € R™.
The domain of the mapping is a set of digital expanded rep-
resentation indexes ip € Zﬂ, which is the Cartesian prod-
uct of constituent M-ary stage template index sets i, € Zpg
with Zp €10,..., M — 1] and stage index p=1,...,P. A
P-stage o-tree search engine is indicated by op(t) = t(ip),
where t are exemplar blocks to be compressed preparatory
to use in classification processing, and t are directly summed
approximations to the t of the data warehouse. The digital
expanded representations ip index the t associated with the
t and are produced by comparing a sequence of pixel block
residuals formed from warehouse exemplar blocks t and the
most similar stage residual templates f:p(~). The pth stage
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intermediate decision of the o-tree sequential search engine
is 0, (t,) = t(4)), and the stage pattern search engine uses a
local nearest neighbor decision rule, where the input to the pth
stage search engine is the pth stage causal residual formed
by the prior o-tree encoder stages t, =t — op_1(t,—1) =t —
t(i,_1) forp € {2,..., P} and where i, ; = (iy---4, 1) isa
partial P-tuple index. Although a nearest neighbor rule is used
locally to identify the best local o-tree causal residual template
match at each stage, there is no guarantee that the collective
stage decisions ip = (i1,...,ip) provide the nearest possible
t(ip) for a given t. That is, it does not necessarily follow
that d(t, t(ip)) < d(t,t(jp)) forall jp € Z};. Although there
is no guarantee of a global nearest neighbor search result
over the set {t(ip)} with local stage pattern search decisions,
design methods presented in [1] yield o-tree sequential search
encoders with acceptable “near neighbor” performance. The
tradeoff of “near” for “nearest” returns orders of magnitude
reduction in implementation costs (computation and memory)
[2] and is well worth a degree of global suboptimality. Further-
more, whatever measure of joint suboptimality is incurred in
this tradeoff can be compensated for by increasing the number
of stages, which requires only a linear complexity expenditure
in both computation and memory.
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